2021 BCCTM Geometry Questions (4-08-21)

1. If the surface area of a cube equals its volume, what is the sum of the lengths of all the edges of the cube?

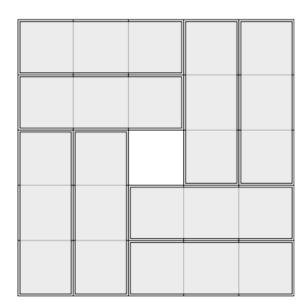
1. ANSWER: 72

Let x be the length of the edge of the cube. Then $x^3 = 6x^2$ so x = 6. There are 12 edges so the sum of the lengths equals $12 \cdot 6 = 72$.

2. A 5 by 5 square is divided up into 25 unit squares. It will be covered with 1 by 3 tiles and 1 by 1 tiles with no overlaps. What is the least number of 1 by 1 tiles that can be used?

2. ANSWER: 1

Since $8 \cdot 3 = 24 = 25 - 1$ and $9 \cdot 3 = 27 > 25$ it seems likely that we can tile the square using 8 1 by 3 tiles and no more than just one 1 by 1 tile. The figure shows that the least number of 1 by 1 tiles is indeed 1.

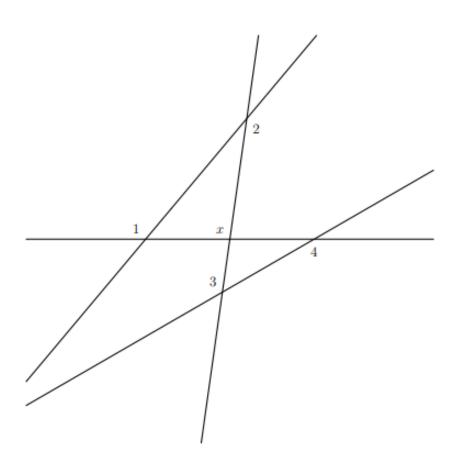


3. Given the system 3x + 13y = 11 and 7x + 5y = 19, what is the value of 5x - 10y?

3. ANSWER: 10

Subtract the first from the second obtaining 4x - 8y = 8 which is x - 2y = 2. Then multiply by 5 getting 5x - 10y = 10.

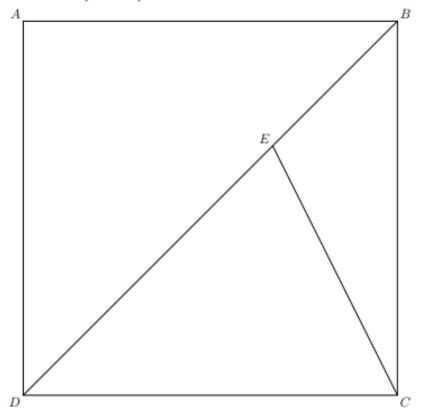
4. What is the value of x in degrees such that m∠1+m∠2+m∠3+m∠4 = 556°?



4. ANSWER: 98

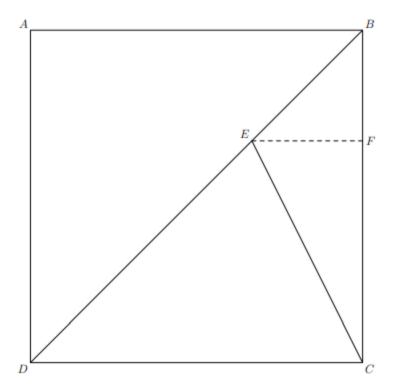
Since an exterior angle of a triangle is the sum of the two remote interior angles, $m\angle 1 = x + (180^{\circ} - m\angle 2)$ so $m\angle 1 + m\angle 2 = x + 180^{\circ}$ and similarly, $m\angle 3 = x + (180^{\circ} - m\angle 4)$. Then $m\angle 3 + m\angle 4 = x + 180^{\circ}$. Thus $2x + 360^{\circ} = 556^{\circ}$, $2x = 196^{\circ}$ and $x = 98^{\circ}$.

6. Square ABCD has sides of length 6 and the length of BE equals 2√2. The length of EC can be written as a√b where a and b are integers and b has no perfect square factors. What is a + b?



6. ANSWER: 7

Draw \overline{EF} perpendicular to \overline{BC} . Then $\triangle BFE$ is a 45°-45°-90° right triangle and since $BE=2\sqrt{2},\ BF=EF=2$ and so FC=4. Then $EC^2=2^2+4^2=20$, so $EC=2\sqrt{5}$. Then $a=2,\ b=5$ and a+b=7.



5. A piece of string 60 inches long is cut into 5 pieces, with each piece 2 inches longer than the previous piece. What is the length of the longest piece?

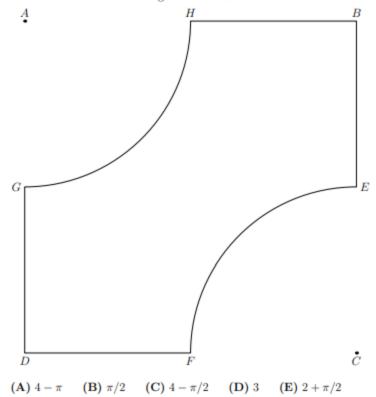
5. ANSWER: 16

Let the length in inches of the shortest piece be x, so the 5 pieces have lengths x, x + 2, x + 4, x + 6 and x + 8. Then

$$x + (x + 2) + (x + 4) + (x + 6) + (x + 8) = 5x + 20 = 60$$

and x = 8, so x + 8 = 16.

7. Square ABCD has side length 2. Quarter-circles of radius 1 are cut from the square at A and C, leaving the figure BEFDGH pictured below. What is the area of figure BEFDGH?

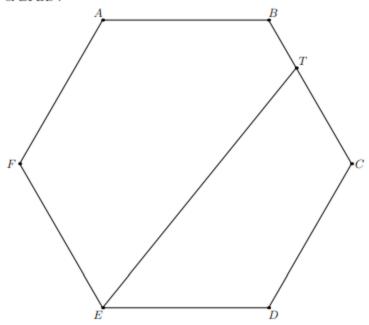


7. Answer (C):

The square has area $2\cdot 2=4.$ Each quarter-circle has area $\frac{1}{4}\cdot \pi \cdot 1^2=\frac{\pi}{4},$

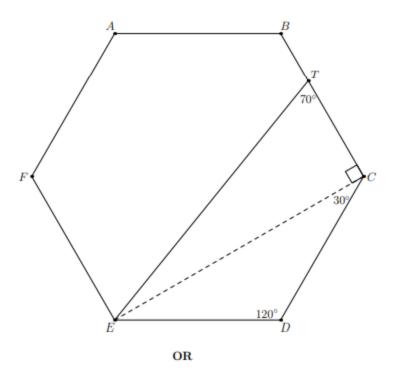
so the total area of the two quarter-circles removed is $\frac{\pi}{2}.$ The remaining area is $4-\frac{\pi}{2}.$

8. ABCDEF is a regular hexagon. If $\angle ETC = 70^{\circ}$, what is the measure of $\angle TED$?



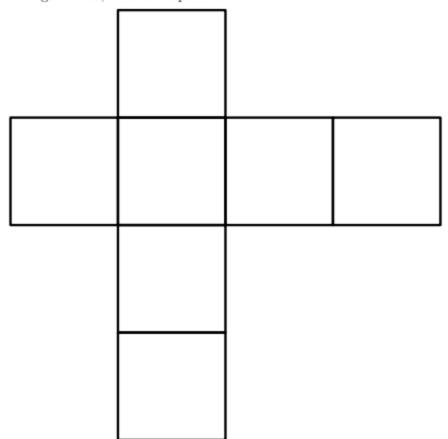
8. ANSWER: 50

Draw \overline{EC} . Since $\angle EDC = 120^\circ$ and $\triangle EDC$ is isosceles, $\angle ECD = \angle CED = 30^\circ$, making $\angle ECT = 90^\circ$ so $\angle TEC = 20^\circ$, making $\angle TED = \angle TEC + \angle CED = 20^\circ + 30^\circ = 50^\circ$.



Since the angles of quadrilateral TCDE sum to 360° and two of the angles are 120° , the other two angles sum to 120° , so $\angle TED = 120^\circ - 70^\circ = 50^\circ$.

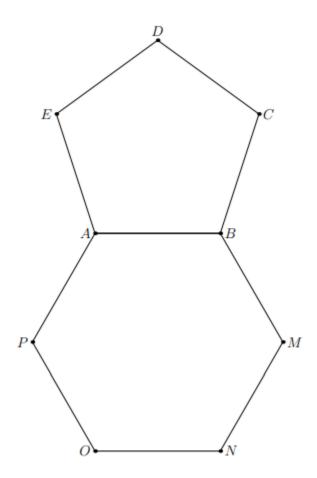
1. The accompanying figure consists of congruent squares. If the area of the figure is 63, what is its perimeter?



1. ANSWER: 48

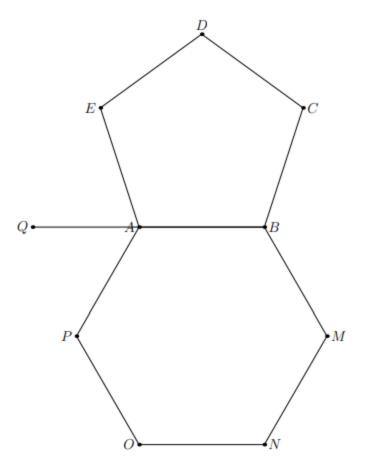
There are 7 squares of side x so $7x^2=63$, making x=3. There are 16 sides of length 3 to the perimeter so the perimeter is $3\cdot 16=48$.

3. A regular pentagon ABCDE and a regular hexagon ABMNOP share a common side \overline{AB} . What is the angle measure in degrees of $\angle EAP$?



3. ANSWER: 132

Consider point Q on the line \overrightarrow{AB} with A between Q and B. Then the exterior angle EAQ has 360/5 = 72 degrees and the exterior angle QAP has 360/6 = 60 degrees, so the angle EAP is 132 degrees.



5. A rectangular cake 4 inches high and 12 inches by 24 inches is cut into rectangular pieces that are 3 inches wide by 6 inches long. By how many square inches has the surface area of the cake been increased?

ANSWER: 864

The surface area of the original cake is $2 \cdot 24 \cdot 4 + 2 \cdot 12 \cdot 4 + 2 \cdot 12 \cdot 24 = 864$. The newly cut pieces will have the same top, bottom, and side surface area but they pick up some additional surface. Using the left hand diagram, the corner pieces labeled A will add a 6 by 4 side and a 3 by 4 side, thereby adding $4(6 \cdot .4 + 3 \cdot 4) = 144$. Side pieces marked B will add two 4 by 6 sides and one 4 by 3 side thereby adding $4(2 \cdot 6 \cdot 4 + 1 \cdot 3 \cdot 4) = 240$. Side pieces marked C will add one 4 by 6 side and two 3 by 6 sides thereby adding $4(1 \cdot 4 \cdot 6 + 2 \cdot 4 \cdot 3) = 192$. Interior pieces marked D will add $4(2 \cdot 6 \cdot 4 + 2 \cdot 3 \cdot 4) = 288$. The total added is 864.

Using the right-hand diagram, the pieces marked A will contribute $4(4 \cdot 3 + 4 \cdot 6) = 144$ while the pieces marked B will contribute $12(2 \cdot 4 \cdot 6 + 1 \cdot 4 \cdot 3) = 720$. The total again is 864.

	6	6	6	6	
3	A	C	C	A	
3	B	D	D	B	
3	B	D	D	B	
3	A	C	C	A	

	3	3	3	3	3	3	3	3
6	A	В	В	В	В	В	В	A
6	A	B	В	B	В	В	В	A

- The four triangular faces of a right pyramid on a square base ABCD are equilateral triangles of side length 1 meeting at the vertex P. The feet of the altitudes to $\triangle PAB$ and $\triangle PBC$ are Q on \overline{AB} and R on \overline{BC} . What is the area of $\triangle PQR$?

- (A) $\sqrt{5}/8$ (B) $\sqrt{3}/4$ (C) 1/2 (D) 3/4 (E) $\sqrt{3}/2$

Answer (A):

Each altitude \overline{PQ} and \overline{PR} has length $\frac{\sqrt{3}}{2}$, so $\triangle PQR$ is isosceles. The base is of length $QR = \sqrt{2}/2$. Then by the Pythagorean Theorem, the altitude of $\triangle PQR$ has length $\sqrt{(\sqrt{3}/2)^2 - (\sqrt{2}/4)^2} = \sqrt{3/4 - 1/8} =$ $\sqrt{5/8} = \sqrt{10}/4$. The area of $\triangle PQR$ is then $(1/2) \cdot (\sqrt{2}/2) \cdot (\sqrt{10}/4) =$ $\sqrt{5}/8$.

 If the length of the radius of a circle is decreased by 20%, then the area of the circle is decreased by k%. What is the value of k?

ANSWER: 36

The original area is πr^2 . If the radius is decreased by 20%, the new radius is $\frac{4}{5}r$ and the new area would be

$$\pi \left(\frac{4}{5}r\right)^2 = \pi \frac{16}{25}r^2 = \pi \frac{64}{100}r^2.$$

The area has been reduced by 36% so k = 36.